Economics 113 Professor Spearot Spring 2014 – Final Name ______ANSWER KEY_____ Introduction to Econometrics

ID_____

Final – 100 Points

You must answer all questions. Please write your name on every page. The exam is closed book and closed notes. You may use calculators, but no graphing calculators. No cell phones. Do not use your own scratch paper.

You must show your work to receive full credit

I have neither given nor received unauthorized aid on this examination, nor have I concealed any similar misconduct by others.

Signature

Problem 1 (50 Points)

We wish to predict real wage outcomes using the following regression:

.reg ln rw college female black i.year

 $\log(rw_{it}) = \beta_0 + \beta_1 college_i + \beta_2 female_i + \beta_3 black_i + \alpha_t + u_{it}$

Here, rw_{it} is the real wage for respondent *i* interviewed in year *t*, *college_i* takes on a value of 1 if respondent *i* is a college graduate (0 otherwise), *female_i* takes a value of 1 if respondent *i* is female (0 otherwise), and *black_i* takes on a value of 1 if respondent *i* is black (0 otherwise). The term α_i represents year fixed effects, which are suppressed in the following results:

Source		ss	df		MS		Number	of obs	=	598475
Model Residual Total	 	25658.4537 186104.335 211762.789	9 65 74	285 . 310 . 353	50.9393 9969454 8837908		Prob > R-squar Adj R-s Root MS	F ed quared E	_ _ _ _	0.0000 0.1212 0.1212 .55765
ln_rw		Coef.	Std.	Err.	t	P> t	 [95%	Conf.	Ir	nterval]
college female black _cons	 	.3899047 2447752 1123664 2.781718	.0018 .002 .0024 .0020	3827 1444 4996 0319	××××××× ×××××××× ××××××××	(XXXXXXXXX (XXXXXXXXXXXXXXXXXXXXXXXXXX	 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxx	××××××× ×××××××× ×××××××××	××> ××> ××> ××>	<pre></pre>

a.) Please interpret **precisely** the coefficient on college. (10 Points)

First, exponentiate the effect and subtract 1.

exp(0.389)-1 = 0.476 + 4

Within years, having a college degree increases wages by 47.6% relative to those without a college degree +2 +2 +2

b.) We wish to test whether there are any interactions between *female* and *black* and *college* using the following specification:

 $\log(rw_{it}) = \beta_0 + \beta_1 college_i + \beta_2 female_i + \beta_3 black_i + \beta_4 college_i \cdot female_i + \beta_5 college_i \cdot black_i + \alpha_t + u_{it}$

The results from running this regression (again suppressing year estimates) are below:

Source		ss	df		MS		Number of obs $F(11, 598463)$	=	598475 7504 87
Model Residual	 	25670.1273 186092.661	11 63	2333	8.64794 950987		Prob > F R-squared	=	0.0000
Total	i	211762.788	74	.353	837908		Root MSE	=	.55763
ln_rw		Coef.	Std.	Err.	t	P> t	[95% Conf.	Ir	nterval]
college female college_female black college_black cons		.3968689 2415216 0182506 1162495 .0293265 2.78049	.002 .001 .003 .002 .007 .007	6744 5945 7573 6832 3784 0615	******* ******* **********************	×××××××× ×××××××× ×××××××× ××××××××× ××××	××××××××××××××××××××××××××××××××××××××	××3 ××3 ××3 ××3 ××3 ××3	<pre></pre>

.reg ln_rw college female college_female black college_black i.year

Which regression is preferred, the regression in '1a' or the regression here in '1b'? Please test this hypothesis at the 95% level, stating your null and alternative hypotheses. **(10 points)**

H0: $B_3=0, B_5=0$ +1 HA: H_0 not true +1 q=2 +0.5 $df_{ur}=598463$ +0.5 $SSR_{ur}=186092$ +0.5 $SSR_r=186104.335$ +0.5 $F_{stat} = ((186104-186092)/2)/(186092/598463) = 19.30$ +3 $F_{crit}=3$ +1

 $F_{stat} > F_{crit} \implies Reject the null! +2$

The interactions between female, black, and college are a jointly significant determinant of the real wage.

c.) Please write the Stata code required to generate college_female and college_black, and provide a different command than in '1b' to estimate the specification with year fixed effects. (10 points)

gen college_female = college*female +3 gen college black = college*black +3

xtreg ln_rw college female college_female black college_black, *fe i(year)* +4

d.) Does the black-white wage gap depend on whether the respondent is college educated? Test this hypothesis at the 99% level, stating your null and alternative hypothesis. Show your work! (10 points)

H0: $B_5=0$ +1 HA: $B_5!=0$ +1 $T_{stat}=(.0293265/.0073784)=3.97$ +3 $T_{crit}=2.575$ +1 $|T_{stat}|>|T_{crit}|=>>$ reject the null!! +1

The black-white wage gap is significantly affected by a college education. +3

e.) What is the **precise** difference in predicted wages between a black college-educated male and a white female without a college degree? (10 points)

BM_C = 2.78049 + 0.3968689 - 0.1162495 + 0.0293265 +1
WF_NC = 2.78049 - 0.2415216 +1
BM_C - WF_NC = 0.551 +2
(Taking the difference properly is worth 4 total points. I don't care how one gets
it)
exp(0.551)-1 = 0.735 +3

A black, college educated male makes 73.5% more than white female without a college education.

Problem 2 (50 Points)

a.) We now use our wage panel dataset from 1980-1987 to examine the determinants of annual hours worked:

$$hours_{it} = \beta_0 + \beta_1 educ_i + \beta_2 manu_{it} + \beta_3 union_{it} + \alpha_t + u_{it}$$

Here, *hours*_{it} is annual hours worked for individual *i* in year *t*, *educ*_i is the time-invariant education level of individual *i*, *manu*_{it} equals 1 if individual *i* works in a manufacturing job in year *t* (0 otherwise), and *union*_{it} equals 1 if individual *i* works in a union job in year *t* (0 otherwise). Note that manufacturing and union jobs are not mutually exclusive outcomes. Estimating this equation using Pooled OLS, we get the following.

. reg hours ed	uc union manu	f i.year				
Source	SS	df	MS		Number of obs	= 1200 = 7.28
Model	25891174.6	10 2589	117.46		Prob > F	= 0.0000
Residual	422789266	1189 3555	83.908		R-squared	= 0.0577
+					Adj R-squared	= 0.0498
Total	448680441	1199 3742	12.211		Root MSE	= 596.31
hours	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ	-23.3217	10.21055	*****	******	*****	****
union	-56.6942	42.35081	******	xxxxxxx	*****	*****
manuf	60.6815	39.21068	xxxxxxx	xxxxxxx	*****	*****
year						
1981	162.335	68.86171	******	******	*****	*****
1982	213.217	69.00531	******	******	*****	*****
1983	291.039	68.90454	******	******	*****	*****
1984	315.447	69.11393	******	******	*****	xxxxxxxxx
1985	358.572	68.91055	******	******	*****	xxxxxxxxx
1986	381.867	68.89213	xxxxxxx	xxxxxxx	*****	xxxxxxxxx
1987	454.073	69.04009	******	******	*****	*****
_cons	2230.84	130.5198	xxxxxxx	xxxxxxx	*****	

Please construct and interpret a 95% confidence interval for the constant in this regression. (10 Points)

 $\begin{array}{rrr} 2230.84 - 1.96*130.5198 < B_0 < 2230.84 + 1.96*130.5198 & +2 \\ 1975.021 < B_0 < 2486.659 & +2 \end{array}$

 $\frac{With 95\% \text{ confidence}}{+1}, a \text{ respondent } \frac{with \text{ zero years of education that works in a non-union, non-manufacturing job}}{+3},$

worked between <u>1975.02 and 2486</u> *hours* <u>in 1980</u>. +2 +2 b.) I claim that being in a union has a significant effect on annual hours worked. Using the results in '2a', what is the probability that I'm wrong? (10 Points)

 $t_{stat} = -56.6942/42.35081 = -1.34 + 3$ $Pvalue = Pr(|T|>|t_{stat}|)$ $= Pr(T>|t_{stat}|) + Pr(T<-|t_{stat}|)$ $= 2(1-Pr(T<|t_{stat}|))$ $= 2(1-Pr(T<|t_{stat}|)) = 2(1-0.9099) = 0.1802 + 7$

c.) Hours worked cannot be negative, though pooled OLS may yield negative values for predictions. What are the two techniques we can use to remedy this issue? (5 Points)

Tobit and Poisson +2.5 each

d.) We now augment the regression equation in '2a' to include individual fixed effects, α_i , but removing the time fixed effects.

$$hours_{it} = \beta_0 + \beta_2 manu_{it} + \beta_3 union_{it} + \alpha_i + u_{it}$$

What happened to education, and why? (5 Points)

 $\begin{array}{c} \textit{Education } \underline{\textit{does not vary by time within the individual.}} & \textit{So, it } \underline{\textit{is absorbed in the fixed effect.}} \\ +5 & +5 \end{array}$

e.) After initializing the panel dimension of the dataset, we estimate the model from '2d':

. xtreg hours	union manuf,	fe					
Fixed-effects	(within) reg	ression		Number of	obs	=	1200
Group variable	: nr			Number of	grou	ps =	150
R-sq: within	= 0.0009			Obs per g	roup:	min =	8
between	h = 0.0079					avg =	8.0
overall	. = 0.0037					max =	8
				F(2,1048)		=	0.47
corr(u_i, Xb)	= 0.0402			Prob > F		=	0.6247
hours	Coef.	Std. Err.	t 	P> t	[95%	Conf.	Interval]
union	5.724433	48.58498	*****	*****	xxxxx	*****	****
manu	43.92626	46.45788	xxxxxx	******	xxxxx	xxxxxx	*****
_cons	2221.753	21.03889	*****	*****	XXXXX	*****	*****
sigma u	425.22232						
sigma e	470.32479						
rho	.44976438	(fraction	of varia	nce due to	u_i)		
F test that al	.1 u_i=0:	F(149, 1048) =	6.50	 P:	rob > 1	F = 0.0000

Please interpret the coefficient on *manu*, and test whether it is significantly different from zero at the 95% level. Show your work! (10 points)

Within individuals, being in a manufacturing job increases annual hours worked by 43.9 relative to non-manufacturing jobs. +3

 $\begin{array}{rll} H_0: & B_2 = 0 & +1 \\ H_A: & B_2! = 0 & +1 \\ \\ T_{stat} = (43.92626/46.45788) = 0.945 & +2 \\ T_{crit} = 1.96 & +1 \end{array}$

 $|T_{stat}| < |T_{crit}| =>>$ fail to reject the null!! Within individuals, the effect of being in a manufacturing industry on hours worked is insignificant. +2

f.) Again assuming that the panel dataset is already initialized, please write out the code to estimate the following:

$$\Delta hours_{it} = \beta_2 \Delta manu_{it} + \beta_3 \Delta union_{it} + \Delta u_{it}$$

How does the interpretation for the coefficient on manu change for this regression relative to 2d?

 $\begin{array}{ll} gen \ diff_hours = D.hours & +1\\ gen \ diff_manu = D.manu & +1\\ gen \ diff_union = D.union & +1 \end{array}$

reg diff_hours diff_manu diff_union, noconstant +2 +2

The interpretation is now "in the short run"

	Nor	mal	Dist	ribut	tion			
	£			7				
		n -0	00 to	L				
Z 0.00 0.0	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0 0.5000 0.5	5040 0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1 0.5398 0.5	5438 0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2 0.5793 0.5	5832 0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3 0.6179 0.6	5217 0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4 0.6554 0.6	5591 0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5 0.6915 0.6	5950 0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6 0.7257 0.7	7291 0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7 0.7580 0.7	7611 0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8 0.7881 0.7	7910 0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9 0.8159 0.8	3186 0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0 0.8413 0.8	3438 0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1 0.8643 0.8	3665 0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2 0.8849 0.8	3869 0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3 0.9032 0.9	9049 0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4 0.9192 0.9	9207 0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5 0.9332 0.9	9345 0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6 0.9452 0.9	9463 0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7 0.9554 0.9	9564 0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8 0.9641 0.9	9649 0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9 0.9713 0.9	9719 0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0 0.9772 0.9	9778 0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1 0.9821 0.9	9826 0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2 0.9861 0.9	9864 0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3 0.9893 0.9	9896 0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4 0.9918 0.9	9920 0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5 0.9938 0.9	9940 0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6 0.9953 0.9	9955 0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7 0.9965 0.9	9966 0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8 0.9974 0.9	9975 0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9 0.9981 0.9	9982 0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0 0.9987 0.9	9987 0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

TABLE G.3b

r*

	· ·		N	umerat	tor Deg	rees of	Freedo	П	_	
 	1	.2	3	4	5	6	7	8	. 9.	10
~~~~	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83

5% Critical Values of the F Distribution

Example: The 5% critical value for numerator df = 4 and large denominator  $df(\infty)$  is 2.37. Source: This table was generated using the Stata[®] function invFtail.