\qquad ANSWER KEY \qquad ID

Final - 100 Points

You must answer all questions. Please write your name on every page. The exam is closed book and closed notes. You may use calculators, but no graphing calculators. No cell phones. Do not use your own scratch paper.

You must show your work to receive full credit

I have neither given nor received unauthorized aid on this examination, nor have I concealed any similar misconduct by others.

Signature

Problem 1 (50 Points)

We wish to predict real wage outcomes using the following regression:

$$
\log \left(r w_{i t}\right)=\beta_{0}+\beta_{1} \text { college }_{i}+\beta_{2} \text { female }_{i}+\beta_{3} \text { black }_{i}+\alpha_{t}+u_{i t}
$$

Here, $r w_{i t}$ is the real wage for respondent i interviewed in year t, college e_{i} takes on a value of 1 if respondent i is a college graduate (0 otherwise), female $_{i}$ takes a value of 1 if respondent i is female (0 otherwise), and black ${ }_{i}$ takes on a value of 1 if respondent i is black (0 otherwise). The term α_{t} represents year fixed effects, which are suppressed in the following results:

Source \|	SS	df	MS	$\begin{aligned} & \text { Number of obs }=598475 \\ & F(9,598465)=9167.91 \end{aligned}$	
Model \|	25658.4537	9	2850.9393	Prob > F	0.0000
Residual \|	186104.335	65	. 310969454	R-squared	0.1212
				Adj R-squa	0.1212
Total \|	211762.789	74	. 353837908	Root MSE	. 55765
ln_rw \|	Coef.	Std. Err.		[95\% Conf. Interval]	
college \|	. 3899047	. 0018	27 xxxxx		xxxxxx
female \|	-. 2447752	. 001	44 xxxxx	xxxxxxxxxxxxxxxx	xxxxxx
black \|	-. 1123664	. 0024	96 xxxxx		xxxxxxx
cons I	2.781718	. 0020	19 xxxxxx	XXXXXXXXXXXXXXXX	$\mathbf{x x x x x x x}$

a.) Please interpret precisely the coefficient on college. (10 Points)

First, exponentiate the effect and subtract 1 .
$\exp (0.389)-1=0.476 \quad+4$
Within years, having a college degree increases wages by 47.6% relative to those without a college degree

```
    +2
                +2
                +2
```

b.) We wish to test whether there are any interactions between female and black and college using the following specification:

$$
\log \left(r w_{i t}\right)=\beta_{0}+\beta_{1} \text { college }_{i}+\beta_{2} \text { female }_{i}+\beta_{3} \text { black }_{i}+\beta_{4} \text { college }_{i} \cdot \text { female }_{i}+\beta_{5} \text { college }_{i} \cdot \text { black }_{i}+\alpha_{t}+u_{i t}
$$

The results from running this regression (again suppressing year estimates) are below:

Source \|	SS	df	MS	Number of obs	598475
				F(11,598463)	7504.87
Model \|	25670.1273	11233	. 64794	Prob > F	0.0000
Residual \|	186092.661	63.31	950987	R -squared	0.1212
				Adj R-squared	0.1212
Total 1	211762.788	74	837908	Root MSE	. 55763
ln_rw \|	Coef.	Std. Err.	t	[95\% Conf.	erval]
college \|	. 3968689	. 0026744	xxxxx	xxxxxxxxxxxxxxx	xxxxxxx
female \|	-. 2415216	. 0015945	xxxxx		xxxxxxx
college_female \|	-. 0182506	. 0037573	xxxxx	xxxxxxxxxxxxxxx	xxxxxxx
black \|	-. 1162495	. 0026832	x \times x \times x		xxxxxx
college_black \|	. 0293265	. 0073784	xxxxx	Exxxxxxxxxxxxxx	xxxxxx
- cons \|	2.78049	. 0020615	xxxxx		xxxxxx

Which regression is preferred, the regression in ' 1 'a' or the regression here in ' 1 b '? Please test this hypothesis at the 95% level, stating your null and alternative hypotheses. (10 points)

```
H0: \(B_{3}=0, B_{5}=0+1\)
HA: \(H_{0}\) not true +1
\(q=2 \quad+0.5\)
\(d f_{u r}=598463 \quad+0.5\)
\(S S R_{u r}=186092 \quad+0.5\)
\(S S R_{r}=186104.335+0.5\)
\(F_{\text {stat }}=((186104-186092) / 2) /(186092 / 598463)=19.30+3\)
\(F_{c r i t}=3 \quad+1\)
\(F_{\text {stat }}>F_{\text {crit }}=\gg\) Reject the null! +2
```

The interactions between female, black, and college are a jointly significant determinant of the real wage.
c.) Please write the Stata code required to generate college_female and college_black, and provide a different command than in ' 1 b ' to estimate the specification with year fixed effects. ($\mathbf{1 0}$ points)
gen college_female $=$ college $*$ female $\quad+3$
gen college_black $=$ college $*$ black +3
xtreg ln_rw college female college_female black college_black, fe i(year)

$$
+4
$$

d.) Does the black-white wage gap depend on whether the respondent is college educated? Test this hypothesis at the 99% level, stating your null and alternative hypothesis. Show your work! ($\mathbf{1 0}$ points)

```
H0: B B =0 +1
```

HA: $B_{5}!=0 \quad+1$
$T_{\text {stat }}=(.0293265 / .0073784)=3.97+3$
$T_{\text {crit }}=2.575 \quad+1$
$\left|T_{\text {stat }}\right|>\left|T_{\text {crit }}\right|=\gg$ reject the null!! +1

The black-white wage gap is significantly affected by a college education. +3
e.) What is the precise difference in predicted wages between a black college-educated male and a white female without a college degree? ($\mathbf{1 0}$ points)

```
BM_C = 2.78049 + 0.3968689 - 0.1162495 + 0.0293265 +1
WF_NC=2.78049-0.2415216 +1
BM_C - WF_NC = 0.551 +2
    (Taking the difference properly is worth 4 total points. I don't care how one gets
it)
exp(0.551)-1=0.735 +3
```

A black, college educated male makes 73.5% more than white female without a college education.
$+3$

Problem 2 (50 Points)

a.) We now use our wage panel dataset from 1980-1987 to examine the determinants of annual hours worked:

$$
\text { hours }_{i t}=\beta_{0}+\beta_{1} \text { educ }_{i}+\beta_{2} \text { manu }_{i t}+\beta_{3} \text { union }_{i t}+\alpha_{t}+u_{i t}
$$

Here, hours $_{i t}$ is annual hours worked for individual i in year t, educ ${ }_{i}$ is the time-invariant education level of individual i, manu $_{i t}$ equals 1 if individual i works in a manufacturing job in year t (0 otherwise), and union ${ }_{i t}$ equals 1 if individual i works in a union job in year $t(0$ otherwise). Note that manufacturing and union jobs are not mutually exclusive outcomes. Estimating this equation using Pooled OLS, we get the following.

Source	SS	df	MS	Number of obs $=$	1200
Model	25891174.6	10	2589117.46	Prob > F	0.0000
Residual	422789266	1189	355583.908	R -squared	0.0577
Total	448680441	1199	374212.211	Adj R-squared Root MSE	0.0498
hours	Coef.	Std.	Err	[95\% Conf. In	terval]
educ	-23.3217	10.21	 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
union	-56.6942	42.35			
manuf	60.6815	39.21			
year					
1981	162.335	68.86			
1982	213.217	69.00	 		
1983	291.039	68.90			
1984	315.447	69.11	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
1985	358.572	68.91			
1986	381.867	68.89			
1987	454.073	69.04	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
cons	2230.84	130.5	198 xxxxx		

Please construct and interpret a 95% confidence interval for the constant in this regression. (10 Points)

$$
\begin{gathered}
2230.84-1.96 * 130.5198<B_{0}<2230.84+1.96 * 130.5198+2 \\
1975.021<B_{0}<2486.659
\end{gathered}
$$

With 95% confidence, a respondent with zero years of education that works in a non-union, non-manufacturing job,
worked between $\frac{1975.02 \text { and } 2486}{+2}$ hours in $\frac{1980}{+2}$.
b.) I claim that being in a union has a significant effect on annual hours worked. Using the results in ' 2 a ', what is the probability that I'm wrong? (10 Points)

$$
\begin{aligned}
t_{\text {stat }}= & -56.6942 / 42.35081=-1.34 \\
\text { Pvalue } & =\operatorname{Pr}\left(|T|>\left|t_{\text {stat }}\right|\right) \\
& =\operatorname{Pr}\left(T>\left|t_{\text {stat }}\right|\right)+\operatorname{Pr}\left(T<-\left|t_{\text {stat }}\right|\right) \\
& =2\left(1-\operatorname{Pr}\left(T<\left|t_{\text {stat }}\right|\right)\right) \\
& =2(1-\operatorname{Pr}(T<1.34))=2(1-0.9099)=\mathbf{0 . 1 8 0 2}
\end{aligned}+7
$$

c.) Hours worked cannot be negative, though pooled OLS may yield negative values for predictions. What are the two techniques we can use to remedy this issue? (5 Points)

Tobit and Poisson +2.5 each
d.) We now augment the regression equation in ' $2 a$ ' to include individual fixed effects, α_{i}, but removing the time fixed effects.

$$
\text { hours }_{i t}=\beta_{0}+\beta_{2} \text { manu }_{i t}+\beta_{3} \text { union }_{i t}+\alpha_{i}+u_{i t}
$$

What happened to education, and why? (5 Points)

Education does not vary by time within the individual. So, it is absorbed in the fixed effect.
e.) After initializing the panel dimension of the dataset, we estimate the model from ' 2 d ':

Please interpret the coefficient on тanu, and test whether it is significantly different from zero at the 95% level. Show your work! (10 points)

Within individuals, being in a manufacturing job increases annual hours worked by 43.9 relative to nonmanufacturing jobs. +3
$H_{0}: B_{2}=0+1$
$H_{A}: B_{2}!=0+1$
$T_{\text {stat }}=(43.92626 / 46.45788)=0.945+2$
$T_{\text {crit }}=1.96+1$
$\left|T_{\text {stat }}\right|<\left|T_{\text {crit }}\right|=\gg$ fail to reject the null!! Within individuals, the effect of being in a manufacturing industry on hours worked is insignificant. +2
f.) Again assuming that the panel dataset is already initialized, please write out the code to estimate the following:

$$
\Delta \text { hours }_{i t}=\beta_{2} \Delta \text { manu }_{i t}+\beta_{3} \Delta \text { union }_{i t}+\Delta u_{i t}
$$

How does the interpretation for the coefficient on тапи change for this regression relative to 2 d ?

```
gen diff_hours \(=\) D.hours \(\quad+1\)
gen diff_manu \(=\) D.manu \(\quad+1\)
gen diff_union \(=\) D.union \(\quad+1\)
reg diff_hours diff_manu diff_union, noconstant
    \(+2+2\)
```

The interpretation is now "in the short run"
$+3$

		0.01	0.02	0.03	0.04			0. 07	0.08	0. 09
	0.5000	0.5040	0.5080	0.5	0.5160	0.5199	0.5239	0.5279	0.5319	
0	10.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	75	0.5714	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	
0	0.6554	0.6591	0.6628	0	0.6700	0.6736	2	0.6808	4	
0.5	0.6915	0.6950	0.6985	0.7019	. 7054	8	3	0.7157	0.7190	
0	0.7257	0.7291	0.7324	0	0.7389	0.7422	0.7454	486	0.7517	
0	0.7580	0	0.7642	0	0.7704	0.7734	64	94	0.7823	
0	0.7881	0	0	0	0.7995	0.8023	1	78	0.8106	
0	0.8159	0.8186	0.82	0.8238	0.8264	0.8289	5	0.8340	0.8365	
1	0.8413	0.8438	0.84	0.8	0.8508	0	4	0.8577	0.8599	
	0.8643	0.8665	0.8686	0.8708	0.8729	0.	0.8770	0.8790	0.8810	
1.2	0.8849	0.8869	0.8888	0.890	0.8925	0.894	0.8962	0.8980	0.8997	
1	0.9032	0.9049	0.906	0.9082	0.9099	0.	0.9131	0.9147	0.9162	
	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	
1	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	
1.9	0.9713	0.9719	0.97	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	
2.2	\| 0.9861	0.9864	0.9868	0.9871	0.9875	0.987	0.9881	0.9884	0.9887	
2.3	\| 0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	
2.6	10.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	
2.7	10.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	
2.8	10.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0	

TABLE G.3b

5\% Critical Values of the F Distribution

Nưnerator Degrees of Freedor										
	1.	2	3	4	5	6	7	8	9.	10
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83

Example: The 5% critical value for numerator $d f=4$ and large denominator $d f(\infty)$ is 2.37 .
Source: This table was generated using the Stata ${ }^{\mathscr{D}}$ function invFtail.

